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Shack Hartmann Subaperture Cross Coupling Study

1. Introduction

If one looks closely, raw centroid videos of the Shack Hartmann focal plane
consistently show faint vertical and horizontal connecting lines between neighboring Hartmann
spots.  An example of this phenomena is shown below by the screen shot of the Arcturus data
video of fc2_save_2014-04-24-000113-0000.avi , frame rate of 120 fps.

Also, in prior work recorded in Astronomy Notebook Section VI, page 75 titled:
Processing of S-H Focal Plane To Give Centroids, dated 3/14/2015, Page 75, Figure 1, shows
these lines in the accumulated average for 50 frames.

Coincidently, and not documented in the astronomy notebooks, I notice that
reconstruction slope discrepancy deteriorates in the presence of high scintillation.

This entry of the Astronomy Notebook investigates the effect of these lines upon slope
centroids. The cause is thought to be the lenslet’s rectangular aperture diffraction pattern, which
may produce subaperture intensity cross couplings from adjacent subapertures.

There is literature relating to this study.  Tory Ellis [1] notes in his USAF dissertation that
Shack Hartmann sensors “have problems” in the presence of scintillation and “can severely limit
the effectiveness of applications such as the Airborne Laser (ABL).  Similarly, Barchers [2,3]
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characterizes the performance of S-H sensors in strong scintillation. Plett [4] studies S-H sensor
error vs spot width and incident intensity and concludes that the intensity dynamic range
(scintillation) makes the sensor susceptible to camera noise for low intensities, and susceptible to
pixel saturation at high intensities. Additionally, he notes that there is an optimal spot size.

2. Shack Hartmann Sensor Vrsn 2

In this study a second version of the Shack Hartmann sensor is used.  This second version
superimposes the telescope’s blur spot in the middle of the array of Hartmann spots. In this way
only one focal plane senses both the Hartmann spots and the telescope blur spot and avoids the
synchronization and data rate problems of what otherwise would be two focal planes. Matrix ray
trace diagrams of the two optical paths are shown below. Common optics of the two paths are
the telescope’s primary/secondary mirrors, reimaging Lens2, and projection Lens 5

The first relay pair uses the telescope’s primary/secondary mirrors along with Lens2 to
relay the telescope’s entrance pupil to the lenslet array.  A second relay pair consisting of lens
L4, and L5 relays and rescales the lenslet array’s blur spots to fit on the smaller focal plane.
These two relay systems form the first optical path.

The second optical path bypasses the lenslet array of the first optical path with a
beamsplitter at 4719 mm distance along the optical path.  After bypassing the lenslet array the
two optical paths are merged with a second beamsplitter inserted at 4847 mm distance along the
optical path.  This second path uses a third relay pair consisting of L6,and L7 to relay the optical
wavefront seen at lenslet array L3’s front focal point to the front focal point of L5, thereby
rejoining the first optical beam path’s Hartman spots.
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In this way, both the telescope’s native blur spot and the Hartmann array spots are
imaged on the same focal plane. While the intent is to correlate the two, since the blur spot is the
Fourier transform of the wavefront reconstructed from the Hartmann spots, only the first path,
that of the Hartmann spots, is used in this study.

3. Calculations

3.1 Point Spread Functions

The nature of the diffraction pattern is checked by calculating the point spread function
of the rectangular lenslet subapertures. Lenslets are on 190 micron centers with focal distances
of 10 mm, i.e., each lenslet f/# is 10mm ÷ 0.190mm = 52.6. Of concern is the proper
treatment of the second relay optics L4, L5 that transfer the lenslet spot array from Lens3 back
focal point to the focal plane.  The lecture from Opti512-29, 13:55 gives the closed form
expression of the Airy disk as related to the numerical aperture (NA) of the beam of light at the
focal plane.  To the question of why use the same Airy disk expression for infinite and finite
conjugate optical systems, Dr Masud Mansuripur notes that “what matters is the shape of the
beam at the exit pupil.  In the case of a collimated beam (infinite conjugate) at the input the
spherical wave goes to the focal point. In the case of a finite conjugate lens the spherical wave
propagates to an image point that is beyond the focal point.  So instead of using (as for infinite
conjugation) we would have to use ”.

Thus, because of the magnification of S-H relay lens pair 2 ( Lens4, fl=60mm and Lens5,
fl=35mm), the focal plane image from lenslet Lens3 is relayed to the focal plane at the Lens5
back focal distance.  The beam numerical aperture (NA) seen at the focal plane is the NA of
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lenslet Lens 3 (fl=10mm, d=190 microns) times the demagnification of relay lens pair Lens4 and
Lens5.  The NA of lenslet Lens3 is,

= sin( ) = 2 = 0.190210 = 0.00950
Relay pair demagnification is

, = = 3560 = 0.5833
Thus the NA of the beam incident on the focal plane is,

= , = 0.00950.5833 = 0.01629
From lecture Opti512-27, 43:38 the focal plane image is2NA sinc(2 NA ̅)
Substituting into the sinc argument we find the first null at,2 ̅ =
with succeeding lobes at , , ⋯ , where ̅ is normalized by ,  i.e., ̅ = , so that ⇒ ̅
and,

= 2 , = 322 , = 522 .
Parenthetically, since = sin = , the above equations are equivalent to the more familiar

form for the first null,

= 2 2
=
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The wavelength in the above equation is determined by the optical bandpass of this S-H
sensor’s beamsplitters. The first beamsplitter that separates the relayed beam into two paths is a
Thorlabs BSN10 - Ø1" 10:90 (R:T) UVFS Plate Beamsplitter, Coating: 400-700 nm, t = 5 mm.
The second beamsplitter that recombines the two beams is a Thorlabs BSW26R - 25 mm x 36
mm 50:50 UVFS Plate Beamsplitter, Coating: 350 - 1100 nm, t = 1 mm. It is seen that the
combined transmission of the two is limited by the bandpass of the first beamsplitter, i.e., a
wavelength range from 400 to 700 nm.

Since lenslet grid spacing is square with 190 × 10 meters on a side, its projection on
the focal plane with the relay demagnification of , = 0.5833 is , × 190 × 10 meters =0.5833 × 190 × 10 meters = 110.8 × 10 meters. Of interest is how extensively does the
diffraction pattern spill over into neighboring subapertures, and to that end the diffraction
pattern’s lobes are calculated. The spacings of diffraction lobes for different wavelengths are,

For = . microns= = . ×× . = 12.28microns= = × . ×× . = 18.42 microns= = × . ×× . = 30.69 microns

For = . microns:= = . ×× . = 15.35microns= = × . ×× . = 23.02 microns= = × . ×× . = 38.36 microns= = × . ×× . = 53.71 microns

For = . microns= = . ×× . = 21.48 microns= = × . ×× . = 32.23 microns= = × . ×× . = 53.71 microns
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To test for cross coupling between adjacent subapertures a Matlab program was written
that forms a blur spot from the superposition of sinc(x) functions for the wavelengths 400, 450,
500, 550, 600, 650, 700 nm.

The simulated focal plane blur spot is a superposition of a rectangular aperture’s sinc
functions at different wavelengths. Vertical black dashed lines denote subaperture boundaries on
the focal plane of width 110.8 microns.

The summed intensity is shown in the next figure.   It is seen that the centroid
contribution to neighboring subaperture intensity is very low, maximizing at 0.006 at subaperture
edge and dropping to 0.0004 into the neighboring subaperture’s far edge.
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3.2 Effect of subaperture jitter

Since blur spot intensity at the focal plane drops with distance from blur spot center, it is
desirable to calculate subaperture worst case blur spot displacement to find the worst case
coupling from a neighboring blur spot. If jitter brings a neighboring subaperture’s blur spot
closely to its subaperture edge, then its coupling is stronger. To that end subaperture blur spot
jitter at the focal plane is found for the measured atmospheric turbulence Fried’s coherence
length .

Fried coherence length at the observatory ranges from 4 cm to 15 cm. Using measured
the single axis mean-square angular tilt, in units of radians squared [Hardy, pg 121, eq 4.58] is

= 0.182
where is the observatory’s telescope aperture of 0.5 meters, and is the wavelength,
approximated here as an average of 0.5 microns.  Substituting for minimum of 4 cm gives the
maximum tilt variance at the telescope entrance pupil,

= 0.182 0.50.04 0.50.5 = 12.26 × 10 radians
or 3.5 × 10 radians rms. The calculation of subaperture variance follows next, where the
prior calculation for the entire aperture tilt showing the dependence of aperture upon tilt
variance.

The entrance pupil subaperture spacing is = = . = 2.5 cm, where , with= 20 is the number of subapertures on a side of the subaperture grid array. The subaperture
single axis tilt variance is,

= 0.182 0.0250.04 0.50.025 = 33.26 × 10 radians
or 5.77 × 10 rms radians.  Interestingly this tilt variance is

. . = 1.65, or 65% larger than

that seen by the full 0.5 meter aperture. To be conservative by considering 3 tilt jitter values,
the 3 subaperture tilt jitter value is 17.3 micro radians at the telescope entrance pupil.

Between the telescope entrance pupil and the lenslet array Lens3 (fl=10 mm) is Lens2
(f=30 mm), which along with the telescope’s primary/secondary mirrors, denoted Lens1

(fl=4160 mm), forms the first relay pair with tilt magnification , = = 138.7. As

described in Section 3.1, a second relay pair comprised of lens L4 ( = 60 mm) and L5 ( =35



8

mm), gives demagnification , = = 0.5833 and relays the lenslet spot array onto the

smaller focal plane.  The jitter displacement seen at the focal plane is therefore,3 = 3 , ,3 = 17.3 × 10 adians × 138.7 × (10 × 10 meters) × 0.58333 = 14.0 microns

The focal plane intensity distribution at these displacement extremes are shown below
with the nominal distribution shown in red, and the intensity distributions at 3 =±14.0 microns shown in blue. The figure shows that the intensity distributions seem to be well
contained within their subaperture.

3.3 Neighboring subaperture tilt correlation

Neighboring subaperture distributions (not shown) above will have identical blur spot
distribution extremes, but their movements will be correlated. By using atmospheric turbulence
structure functions, the optical phase variance for spatial separations that relates wavefront
phase ( ) is,

( ) = {[ ( ) − (0)] } = 6.88
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with units of radians squared. Since ( ) is the optical path difference (OPD) over

displacement in radians, then for a subaperture spacing = the wavefront’s angular slope
difference in radians between adjacent subapertures at the telescope entrance pupil is

= tan 2 ( ) ≈ 2 ( )
where again is subaperture spacing, and the approximation follows because the slope
difference angle over distance is small and the tangent of a small angle is approximately the
angle itself. The relative blur spot to blur spot displacement difference seen at the focal plane is
therefore, = , ,

For this application with minimum = 4 cm and subaperture spacing = 2.5 cm, the
atmospheric turbulence induced phase variance between adjacent subapertures is,

( ) = {[ ( ) − (0)] } = 6.88 2.5 cm4 cm(2.5 cm) = 3.14 radians
or (2.5 cm) = 1.77 radians rms.  The subaperture to adjacent subaperture OPD is therefore,

= 2 (2.5 cm)
= . × 1.77 radians rms= 0.1409 × 10 meters rms

The subaperture-to-subaperture differential OPD tilt angle is therefore = . ×. × =5.6 urad.  The relative blur spot to blur spot displacement difference seen at the focal plane is
therefore, = , ,= 5.6 × 10 radians × 138.7 × (10 × 10 meters) × 0.5833= 4.53 microns
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To be conservative, one might consider the 3 sigma value of relative subaperture-to-subaperture
blur spot displacement of 3 or 13.6 microns.

3.4 Effect of Scintillation

The Earth’s turbulent atmosphere causes stars to “twinkle”, i.e., to undergo rapid
fluctuations in their measured intensity as seen on the ground.  These are “flying shadows” that
change their shape and intensity quickly over time and are labelled as scintillation. Scintillation
is produced mostly by wavefront curvature [5], because it involves focusing and defocusing
within the optical wavefront. For astronomical viewing, whose line of sight extends through the
entire atmospheric, scintillation originates in the upper atmosphere.

The figure below shows this telescope’s (0.5 meter aperture) entrance pupil Hartmann
spots that have scintillation induced intensity variation.  The center spot is the relayed telescope
point spread function from optical path 2 (see Section 2) and is not relevant to this analysis.
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Each S-H blur spot has scintillation induced intensity differences and are the “flying
shadows” [5] that sweep across the telescope aperture with time. The amount of scintillation is
quantified by the scintillation index as defined [6, 7] by the normalized variance of
fluctuations in intensity ,

= ( )( )
For small scintillation index values ≤ 0.1 the intensity probability density function
approximates as Gaussian, but tends to a Poisson distribution shape for larger [5].

In some publications [6] the intensity variance is instead given for the logarithm of
measured intensity,

( ) = ( ) − 1
which equals [6] for weak scintillation and obeys a more Gaussian probability density
function distribution.  This distribution follows from the theory that random perturbations in the
propagation path have a multiplicative effect, and the logarithm of these perturbations are
additive. Over an appreciable propagation path the number of multiplicative effects becomes
large, and from the central-limit theorem the sum of these logarithmic perturbations gives a
Gaussian distribution.

For small scintillation index values ≤ 0.1 both measurement formulations give similar
index values.

Of interest in this cross coupling study is the ratio of intensities between adjacent
subapertures. If scintillation produces a smaller subaperture intensity vis a vis its neighbor, then
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the neighboring subaperture couples more strongly and potentially produces subaperture
centroiding error. To that end the log normal distribution is useful because the intensity max/min
ratio is simply the antilog of the difference in log intensities.  Further, since the log intensity is
mostly a normal distribution probabilities may be assigned. Thus the standard deviation of the
log variance is,

( ) = ln ( ) + 1
and the ratio of max to min intensities is the antilog,

= = [ ( ) ( )] = ( )
where the last equality follows from taking the difference in intensity logs as some multiple of
the log normal distribution standard deviation ( ) . If = 2 for example, then the ratio
between maximum and minimum intensities is ± one natural log normal standard deviation.

While the ratio of max to min intensities is found from the log normal distribution ( ),
it may also be found from the scintillation index xpression for low values of . Thus, given
an intensity probability density function with mean and variance , the ratio between the
lower bound of greatest intensities and the upper bound of the least intensities is the
ratio between upper and lower regions of the intensity pdf,

( ) = +−
where k is a constant that scales intensity standard deviation, giving a larger max/min intensity
ratio for larger .  From the normalized variance version of the scintillation index = , then

( ) = +−
( ) = 1 +1 −

Thus, if = 0.1, i.e, low scintillation for example, then = 0.3162 and for = 1, the
ratio is 1.92. For moderate to strong scintillation, whose scintillation index values range up to
five or six, the above expression’s denominator goes to zero and fails to be useful.



13

3.5  The Importance of Thresholding

This section shows the importance of modest thresholding in minimizing adjacent
subaperture crosstalk.  The motivation comes from the centroiding algorithm itself,

= ∑ ( ) ( )∑ ( )
As subaperture position ( ) in the numerator approaches subaperture boundaries, it

increasingly weights the contribution of edge intensity, including intensity that spills over from
neighboring subapertures. Not uncommonly, scintillation produces subaperture intensity
differences between neighboring subapertures, with a ratio of 1:6 for commonly observed
scintillation indices ranging upwards of = 0.4 . For a 1:6 ratio, the next figure shows the
contribution of a neighboring subaperture upon the centroiding process. Thresholding minimizes
this centroiding error by reducing the summing interval from ± subaperture edges to a small
neighborhood about the subaperture blur spot.

The two traces in blue are the intensity profiles of the subaperture blur spot, and its
neighboring right subaperture superimposed contribution.  It is seen that while adjacent coupling
is small, it is weighted heavily by its large distance ( ) from subaperture center.  The red is the
thresholded portion of the diffraction pattern.  The threshold shown here is 30% of peak
amplitude.   The centroidng error vs threshold for the 1:6 intensity ratio is shown by the next
figure.
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The left most irregular portion of the plot shows that a large centroid error occurs with a
zero or very low threshold.  This irregularity occurs because of the small intensity irregularities
that extend to the ± subaperture boundaries.  As the threshold percentage increases there is an
abrupt decline of centroiding error as only the main body of the blur spot diffraction pattern
contributes to the centroiding.

For thresholding less than 5%, maximum centroiding error is substantial at almost 1.9
microns. At 30% thresholding the centroiding error reduces significantly to only 0.008 microns.
Since the blur spot displacement at the focal plane relates to the tilt at the telescope’s entrance
pupil as, = , ,
where , = = = 139 is the angular magnification of Relay Pair 1, = 10 is

the focal length of Lens3 lenslets, and , = = = 0.5833.  The tilt error, which is

substantial, seen at the telescope entrance pupil is= . ×× × × . = 2.5 × 10 radians

Similarly, for centroiding error of 0.008 microns the tilt error seen at the telescope entrance pupil
is, = . ×× × × . = 0.0106 × 10 radians

which is negligible.
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4. Experimental Results

4.1  Atmospheric Turbulence of Nov 21, 2017

To study the effect of scintillation on subaperture cross coupling movies were made in
the observatory of Hartmann spots using the Shack Hartmann (S-H) sensor, version 2. The S-H
sensor maps the telescope’s aperture of 0.5 meters onto the focal plane as a 20 × 20 grid array
of Hartmann spots.  The focal plane is an 8-bit CCD Point Grey Flea3 model FL3-GE-03S1M-C
(Sony ICX618 CCD ¼”, 5.6 um chip) operated at 120 fps.

Experimental atmospheric data is in the form of Hartman spot movies of bright star light.
Using Vega starlight, the movie data for this experiment was taken on the evening of November
21, 2017. Exposure time is adjusted (5 msec) to exclude focal plane saturation. The particular
movie analyzed here (Vega_120fps_5msExp_2017-11-21-184838-0000) has 1000 video frames.

Wind models (www.ventusky.com) show the jet stream at 12,000 meters (39,000 feet) to
have a 60 mph wind velocity so scintillation should be moderately strong. Estimated wind
velocities and direction at that same time vs altitudes are,

Altitude (meters) Wind Speed (mph) Wind direction
500 3 SE
750 3 SE

1,000 5 S
1,500 12 SSW
2,000 15 SSW
2,500 15 SSW
3,000 20 SSW
3,600 21 SW
4,200 33 SW
5,500 39 SW
9,000 65 SW

12,000 60 SW
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The table shows a natural wind gradient with altitude, with no appreciable crosswinds.  It
is not uncommon, however, for wind at a higher altitude (the jet stream) to flow orthogonally to
winds that flow at lower altitudes within the Santa Clara Valley.

A Matlab centroiding program was written to process the movie data’s Hartmann spots. It
has the ability for one to selectively turn on or off several figures to monitor the centroiding
algorithm’s processing.  The first figure below of example frame 1 shows the nature of
scintillation in which some subapertures are bright, some dark, and others moderately
illuminated. These are the ‘flying shadows’ that stream across the telescope aperture at some
velocity. There are no saturated pixels in this data.  The central blur spot is ignored in this
analysis.

---X--->

<-
--

Y
--

--

Frame 1, Saturated Pixels = 0,  480 X 640 Averaged Image,  time stamp = 206, 241, 168, 39

-100 0 100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

0

50

100

150

200



17

To automatically establish subaperture grid coordinates all the movie frame’s Hartmann
spots are averaged.  Grid coordinate offsets, slopes, and spacings are found in the sense of least
squares that fit the averaged spots. The figure below details the averaging and centroiding and is
useful because it shows the mean nature of the Hartmann spots without noise.

The 1st panel (upper left) denotes the , subaperture in the Hartmann spot array that
is being examined.  The 2nd panel (upper center) shows the lower region (0 to 15 ADU counts) of
the averaged blur spot, where the diffraction spikes are clearly evident and motivate this study.
The 3rd panel (upper right) is the 2nd panel’s averaged blur spot’s y axis cross section profile,
showing the blur spot matches the calculated rectangular diffraction pattern of Section 3.1. The
red dot is the dynamic threshold at the y axis centroid, its distance below centroid peak being a
programmable percentage of the instantaneous blur spot peak. The 4th panel (lower left) is the
averaged blur spot’s x axis cross section profile and similarly the red dot shows the dynamic
threshold at the x axis centroid.  The 5th panel (lower right) is the remaining averaged blur spot
after thresholding that is to be centroided. Since this is an all frame average, focal plane noise
randomness is averaged out and shows as a baseline mean.

The next figure shows a subaperture’s unaveraged, individual centroid intensity as it
occurs for example frame 2, at , subaperture grid position = 10, = 19 .
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As for the previous figure, The 1st panel (upper left) shows the lower region (0 to 15
ADU counts) of the unaveraged subaperture blur spot, where the diffraction spikes are not seen,
being dominated by focal plane noise. Parenthetically, using the Andor Zyla camera with very
low noise, this is not the case and diffraction patterns are clearly seen. The 2nd panel (upper
right) is the unaveraged blur spot’s y axis cross section profile, with a red dot description as
before.  The 3rd panel (lower left) is the unaveraged blur spot’s x axis cross section profile,
while the 4th panel (lower right) is the unaveraged blur spot after thresholding that is centroided.

The next figure details the intensity and log intensity histograms of an example (i=12,
j=20) subaperture.
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The above histograms show the nature of subaperture intensity and log intensity
distributions for an , subaperture grid position = 14, = 1 . In each panel the thick
vertical red line is the histogram mean, while the thinner red lines are the ±1 , and ±2
standard deviations from the mean. The intensity histogram panel on the left shows a log-normal
distribution (but a more Gaussian distribution for ≤ 0.1).  The log intensity histogram on the
right is more Gaussian.

In their respective titles it is seen that the scintillation indices are similar, = 0.184 on
the left panel and = 0.198 on the right as expected [6] because this is weak scintillation. The
ratio between -1σ and +σ intensity distributions is 2.5 on the left vs 2.3 for the log normal
variance on the right. Note that the left panel’s probability density function changes with
scintillation index so it is difficult to assign probabilities and hence its -1σ and +σ ratio is not
useful.

The above figure shows the scintillation index for each subapertures with an average
mean index of 0.17 across all subapertures. The ratio between greatest and least is about 2:1 and
aside from a few edge subapertures is fairly uniform.
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4.2 Atmospheric Turbulence of Nov 28, 2015

Other atmospheric turbulence data is available for analysis, but doesn’t have a Ventusky
velocity profile. One such data was taken on the night of November 28, 2015, but with an Andor
Zyla 5.5 sCMOS 12-bit USB3.0 camera instead of the 8 bit Point Grey Flea3 model FL3-GE-
03S1M-C. Operated in global shutter mode with resolution 512 x 512 and operated at 185 fps,
the Zyla camera has measured noise of 2.78 e- RMS.  By contrast the Flea 3 camera with
resolution 640 x 480 and operated at 120 fps has measured noise of 27.8 e- RMS (See result
table on page 3 of Astronomy Notebook, dated June 10, 2016).

The Andor Zyla camera with its improved frame rate, 10X lower noise, and 16X greater
dynamic range therefore has better fidelity to measure atmospheric turbulence at higher
scintillation values.

Movies were made of the S-H sensor using Capella starlight and the camera was operated
at 168 fps, with a 1 millisecond exposure time.  The faster exposure time minimizes blurring of
the Hartmann spots from an ever changing turbulence aberration.  The file name is
Zyla_Capella_600frames_168fps_Exps1msec_Global_512x512_2015_11_28.tif and consists of
600 frames. In this data set, the atmosphere exhibited increased scintillation from that of
November 17, 2017.  An example frame histogram for the , subaperture grid position= 9, = 4 shows a scintillation index = 0.536 .

The figure above shows the nature of the intensity histogram distributions.  On the left
panel the amplitude distribution shows as a log normal distribution with some intensity values
very close to zero, with a bright intensity spike out to 1080. The distribution on the right shows
that the log of intensity results in an approximate Gaussian distribution as expected.   Note that
this is only moderately strong scintillation.  It is easy to see that strong scintillation ranging
up to 4 will give moments of light intensity that are less than the focal plane noise floor.
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Besides concern for low light levels, there is the problem of the Shack Hartmann’s
susceptibility to wavefront branch points in which the wavefront E-field phase function has
unavoidable 2 discontinuities. Barchers, Fried and Link [2] find that the performance of
Hartmann sensors degrades severely when the Rytov number exceeds 0.2 . The Rytov variance
represents the normalized irradiance variance, or scintillation index , of a plane wave in weak
fluctuations, but is otherwise a measure of optical turbulence strength in strong fluctuation
regimes [9, pg 2].

Thus, for the above distribution with = 0.536, not only are there problems with light
intensity drop-outs, but also problems with E-field 2 discontinuities or branch points. On the
other hand, an atmospheric turbulence with high scintillation is equally likely to have low values
of and be undesirable for any astronomical imaging.  The turbulence with the above =0.536 had a very poor = 4.1 cm .

5. Conclusion

1.  The lenslet’s intensity distribution spills over into adjacent subapertures for this S-H design
with subaperture spacing of 2.5 cm. Usually, subaperture spacing is equal to , which for this
application would be 4 cm and would otherwise make the S-H less susceptible to subaperture
coupling.

2.  Adjacent subaperture tilt jitter is correlated over a longer spatial interval than the Fried
parameter, so blur spot displacement between neighboring subaperture follow each other to some
degree.  The jitter difference was calculated and cross coupling is noted.

3.  Scintillation modulates the coupling between subapertures with a neighboring well
illuminated subaperture coupling more strongly than one that is dark.  For moderate scintillation
of ≤ 0.4 adjacent subaperture coupling was observed.

4.  Thresholding is a very effective way to mitigate subaperture coupling.   Without thresholding
adjacent subaperture coupling produced a tilt error of 2.5 × 10 radians.  With only 30% of
blur spot peak thresholding the error drops dramatically to 0.0106 × 10 radians.

4.  The dominate failure mode for high scintillation is not subaperture to subaperture
coupling, but intensity dropouts.  Low noise focal planes help in this regard.

5. E-field branch points are likely for moderately strong scintillation for which the atmosphere’s
Rytov number exceeds 0.2.

6.  By comparing the turbulence wind velocity of 5.7 mph found in the Appendix with the wind
table of Section 4.1, the turbulence layer is estimated to be at 3000 feet, which coincides with the
marine layer altitude.
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Appendix – Evaluation of Atmospheric Data Video

Besides evaluating scintillation, which originates in the atmospheric tropopause at about
10,000 meters, optical wavefront distortion occurs in the lower elevations and there are a number
of metrics for evaluating atmospheric turbulence.  The first is the Fried coherence parameter ,
followed by slope discrepancy which measures centroiding noise and fitting noise, and the
temporal structure function which gives measurement of coherence time (Greenwood frequency)
and wind velocity.  The Fried coherence parameter is shown first.
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The Fried coherence parameter is computed for each frame using the structure function
relation,

( ) = {[ ( ) − (0)] } = 6.88
where a reconstruction matrix applied to the computed centroids gives OPD error (microns),
which is converted to phase (radians) using an average wavelength of 0.5 microns.  The figure
below shows a typical solution for an example frame 2 of Hartmann spots.

For this frame, while the structure function’s log 5/3 relation  holds well for spatial
intervals less than about 20 cm, it is seen that greater separations have greater variance.
Increased variance occurs because there is less averaging as separation distances approach the
telescope’s aperture diameter. The above structure plot, however, is but one realization of an
ensemble of 1000 frames.  The 1000 frame expectation is
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It comparing the two panels above it is seen that ensemble averages for = = 8
cm.   Thus atmospheric turbulence is isotropic, as expected.

A Hartmann sensor measurement is considered to be an estimate of the mean gradient
over the subapertures, but it contains a component that is not in the range space of the operator P,
this component is called the slope discrepancy, where P is the geometry “poke” matrix. If is
the Hartmann x,y slope column vector. = is the reconstruction matrix, where † denotes the
Moore Penrose pseudo inverse, then the reconstructed slope vector is , and the slope
discrepancy is the difference between measured and projected slopes,= −
In words, the measurement is reconstructed with R and projected back into slope space with
operator P.  The difference between this result and the original slope vector is called the slope
discrepancy and is in the range space of ( − ), while is in the null space of ( − ).

The slope discrepancy difference as a function of time separation is defined byΔ = ( + ) − ( )
The slope discrepancy structure function is given by the mean square slope discrepancy

difference,

( ) = 1 〈Δ ( , ) Δ ( , )〉
The figure below shows the slope discrepancy structure function vs time separation , where is

a multiple of frame rate sampling interval of 8 msec.  It is seen that measurement noise is .
while fitting error is . .   See Astronomy Notebook pg 164-166, dated Feb 19, 2016 for details.
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The averaged temporal phase structure function is

And from the above structure function, the coherence time estimate is quite slow ranging
between 9.3 and 11.4 msec.  Similarly, the Greenwood frequency is also quite low, ranging
between 11.7 and 14.4 Hz. This compares with coherence estimates of 5.0 to 6.0- msec and
Greenwood frequency of 12.2 to 13.7 Hz on April 24, 2014, recorded in Astronomy notebook,
pg 171, dated 2/19/2016. Usual measurements for are in the range of 2 to 5 milliseconds, and
Greenwood frequencies ranging from   27 to 67 Hz.  Greenwood frequency and coherence time

are related as, = .
.
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From the slope discrepancy, measurement noise estimate and fitting error estimate, the
estimated wind velocity for each frame is shown below.  The average of all frame estimates is
5.7 miles/hour.

This is a noisy estimate, but averaging is justified because the total time scale for these

measurements is = 8 sec and wind does not change its velocity so rapidly. Using the

less noisy Andor Zyla camera may reduce this noise.  The estimated wind velocity compares
with 10.3 mph on page 173, dated Feb 19, 2016.  See Astronomy Notebook pages 166-169,
dated Feb 19, 2016 for derivation details of the estimation algorithm
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