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Introduction:   
 

 

 In Astronomy Notebook Section XVIII, pg 191, dated January 17, 2014  with conclusion 

on pg 217 we found surprisingly that the usual centroid or C-tilt was the least effective of 

several algorithms for reducing tip/tilt jitter, with  peak detection being the best.  Then  we 

designed a Shack Hartman sensor, build a Reconstruction matrix, took videos of the Hartmann 

spots from which wavefront OPD was reconstructed.   Then in Astronomy Notebook Section VII, 

pg 93, dated March 23, 2015 with conclusion on pg 115 we simulated the tip/tilt servo using the 

reconstructed wavefront from the movies and found that servoing off of Z-tilt gave the best 

jitter mitigating result.Z 

 

 

Relevant Literature 

 

 Relevant to this study is the dissertation by John Paul Siegenthaler, GUIDELINES FOR 

ADAPTIVE-OPTIC CORRECTION BASED ON APERTURE FILTRATION  , December 2008.  It is worth 

noting his discussion in Chapter 3, page 49 regarding tilt.  He writes, 

 

3.2.1. Definitions of Tilt 

 

 As noted, the purpose of tilt correction is to remove net tilt from a wavefront and center 

the far-field pattern. However, “tilt” and “center” are not as clearly defined as one might think. 

Huygens’ Principle defines tilt and a vector of propagation locally at each point in a wavefront. 

For tilt of a wavefront as a whole, there are two prevalent definitions. 

 

 Gradient-tilt, or G-tilt, is an average of all the local gradients on a wavefront, based on 

the assumption that an average of all the local propagation vectors on a wavefront should yield 

an average vector of propagation for the entire wavefront.[2]  Zernike-tilt, or Z-tilt, comes from 

the set of Zernike polynomials that are often used to construct approximations of wavefronts and 

other surfaces. The ��� and ���� Zernike polynomials are of the form z = r cos (�) and z = r sin 

(�) respectively, or z = x and z = y in Cartesian coordinates. The polynomial �� is of the form z 

= 1. Therefore, using the first three Zernike polynomials to approximate a wavefront takes the 

form of a least squares fit to a flat line (A + Bx) in two-dimensional constructions or a plane (A 

+ Bx + Cy) in three-dimensional approximations.[3]   As the desired end result of AO correction 

is a flat line or planar surface that is perpendicular to the desired vector of propagation, one 
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might expect that applying correction to remove the slope of this approximation to be an 

effective first step in achieving this. 

 

 However, as can be seen in Fig. 3.2, these two forms of tilt do not necessarily agree. 

Using a full cycle of a sine wave as a simulated wavefront, the average of the local propagation 

vectors is a vector perpendicular to the x-axis, which indicates no net angle of deflection and no 

net tilt. On the other hand, a least-squares fit with a function of the form y = A + B·x shows a 

significant slope across the extent of this wavefront, indicating tilt. 

 

 
Either definition of tilt may be considered to be correct, depending on the intended application. 

 

 G-tilt is the average of the deflection angles or slopes across a wavefront. If the 

wavefront is of uniform irradiance and is defined by a surface z(x) across a finite aperture 

extending from �� to ��, then the x-component of G-tilt is defined by 

 

 
Thus, for a wavefront of uniform irradiance over a one-dimensional aperture, G-tilt can be found 

by drawing a line between the endpoints of the wavefront at the edges of an aperture. In the 

example of Fig. 3.2, these endpoints are on a sine wave, separated by one full cycle, so �	��
 �
�	��
 and the G-tilt = 0. This property could be used as a means of detecting tilt across an 

aperture by measuring phase or OPD around the edges of an aperture. 

 

 Z-tilt is found by selecting constants A and B to minimize the expression 
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The value of B then corresponds to the overall tilt of the wavefront by this definition. If the point 

of reference is shifted so that the aperture of width d is centered around x = 0, 

 
 

In the example of Fig. 3.2, if the sine wave used to represent a wavefront has an amplitude of a 

and a period of Λ, then 

 

 
 These expressions ignore variations in y, or cases in which irradiance is not constant in 

the near field. In cases with varying irradiance, such as that in a Gaussian beam, the wavefront 

displacement, z(x), must be weighted by the irradiance in the wavefront at that point. [4] 

 

 

3.2.2. Measuring Tilt 

 

While tilt can be inferred from the near-field wavefront as indicated in the preceding 

paragraphs, the most common means of measuring tilt is to find the center of the irradiance 

pattern in the far field. The point of T/T correction is to align the beam onto a target, thus the 

angle between the intended axis of propagation and the vector pointing to the center of the far-

field pattern is a very practical definition of tilt. 

 

 This angle is most often found with some form of position sensing device, which receives 

an optical intensity pattern, and returns a value based on the position of the center of this 

pattern. If the irradiance pattern of a beam is found to be centered at 	� , �
 while the desired 
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on-axis location would be (0, 0), and it is known that the deflection occurred at some distance L 

from the sensor, then the angle of deflection (x) can be found to be 

 

 
 

The approximations  �� ≅ �� ��   and  �� ≅ �� ��   hold if �� and �� ≪ �. 

 

 However, just as there is more than one definition of tilt for a wavefront, there is more 

than one way of defining the center of an irradiance pattern. This is illustrated by the two most 

common types of position sensors, quad cells and centroiding devices. 

 

 The four-element quadrant detector, or quad cell, is a set of four irradiance sensors, 

often some form of photodiode.[1] Arranged into a four-quadrant pattern, each cell produces a 

signal proportional to the total energy flux due to light falling on that cell.  A representation of 

this arrangement is shown in Fig. 3.3. If we let A, B, C, and D represent the signals from these 

cells, then for small variations in from a centered position, the x-position of the irradiance 

pattern will be proportional to the quantity((A + B)− (C + D)) (A + B + C + D) . That is, the 

pattern is held to be centered at x = 0 when the total energy falling on the left half of the quad 

cell equals the total energy falling on the right half. Scaling the difference in energy falling on 

the two halves by the total energy falling on the entire sensor produces a result that will be 

proportional to the lateral shift in the pattern, with a constant of proportionality that will remain 

roughly the same even if there are changes in the pattern or overall irradiance. A similar 

relation holds for the y-position. 
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 As noted, the proportionality for shifts in the location of the irradiance pattern only 

applies if that location is near to the center of the sensor, compared to the size of the pattern or 

the size of the central spot of the pattern if it has one. If a significant majority of the light falling 

on the sensor falls into one cell, the sensor has no way of telling where in the cell this 

concentration of incoming energy may be. A quad cell works best when the size of the sensor is 

only slightly larger than the size of the pattern for which a location is to be found. If the pattern 

is larger than the sensor, then significant portions of the light in the pattern may miss the sensor 

and will not be accounted for. If the pattern is small enough to fit into one cell, then the dynamic 

range of the sensor will be limited.  Despite these limitations, quad cells are commonly used 

because their relative simplicity lends itself to implementations that are reliable and durable 

when used in the field.  

 

 Another type of position sensor is the lateral effect detector, which is also known as a 

position sensing device. This sensor consists of a sheet of photoelectric material with electrodes 

along the four sides of the sheet,[5] as shown in Fig. 3.4. When photons strike the photoelectric 

material, free electrons are produced that flow into the electrodes.  The number of electrons 

produced at a point on the sensor is determined by the energy flux density of the light falling on 

that point.  Some of the electrons produced then become current flowing into the four 

electrodes. These free electrons are more likely to flow into the electrode closest to their point of 

generation. If the light were focused to an infinitesimal spot, then the position of that spot 

between electrodes A and B in Fig. 3.4 would be proportional to the difference in the current 

flowing into A and the current flowing into B, divided by the sum of the two currents. That is, 

� ∝ 	� � �
 	� � �
�  where A and B are the currents flowing into the respective electrodes. A 

similar relation holds for the vertical position between electrodes C and D. 
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 At first glance, this appears to be equivalent to the operation of the quad cell.  However, 

when the energy within the intensity pattern is not concentrated on a single point, then a sensor 

of this sort will produce a result based on a weighted-average centroid of the form, 

 

 
 

with a similar relationship for position in y. Since each point on the sensing area of the detector 

effectively acts as a separate sensor, this type of sensor is not as susceptible to considerations of 

pattern size or larger pattern shifts as the quad cell. 

 

 These different definitions of the center of an irradiance pattern are all quite valid, just 

as the different definitions of tilt in section 3.2.1 are valid. However, they are different, and if 

one does not keep those differences in mind, then that can lead to problems in trying to deal with 

tilt.  

 

 As tilt is primarily of interest in aligning the far-field intensity pattern on a target, a look 

at the far-field pattern is instructive. Figure 3.5 shows far-field intensity patterns for the 

sinusoidal wavefront in Fig. 3.2, with a peak-to-valley phase variance of 0.8 radians. The solid 

vertical line in Fig. 3.5 (a) indicates the location of the far-field intensity pattern’s centroid, as 

found with a weighted average of the form in Eq. 3.7.  The dashed vertical line in Fig. 3.5 (a) 

indicates the point corresponding to a quad cell  definition of center, at which the total intensity 

to the left of that point ∑ �� � equals the total intensity to the right of that point ∑ �� � . 

 

 
 

 As can be seen in Fig. 3.5, the locations of these two definitions of the center are not 

equivalent. The centroid definition of centering the pattern is at x = 0, which indicates there was 
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no tilt in the original wavefront and agrees with earlier evaluation of G-tilt for the wavefront in 

Fig. 3.2. On the other hand, Fig. 3.5 (b) shows the far field for a wavefront with tilt calculated 

according to the Z-tilt definition and removed.  Performing T/T correction based on this 

definition of tilt shifts the far-field pattern so that the center point according to the quad cell 

definition of center is placed near x = 0.  Interestingly, this also places the point of highest 

intensity in the far field closer to x = 0. 

 

 Increasingly, arrays of charge-coupled device (CCD) photosensors, of the sort that serve 

as the basis for most digital cameras, have been used as position sensors.1 Each pixel in the 

array produces a signal or digital value proportional to the irradiance falling on that sensor. If a 

far-field pattern falls across several pixels of the array, then a weighted average centroid can be 

found through numerical integration approximating Eq.3.7. If the size of the pattern is on the 

order of one or two cells across, then a set of four pixels in a square pattern can be used as a 

quad cell. Larger blocks of pixels can be used as the equivalent of larger quad cells, but it is rare 

to do so if enough pixels are involved to make centroiding a viable option. 

 

  A limitation of CCD array centroiding is that spatial and temporal resolutions become 

factors in this form of sensor. Properly approximating Eq. 3.7 requires pixels small enough to 

resolve relevant features in the far-field pattern and enough pixels to encompass the pattern, 

including spreading and wandering of the pattern due to aberrations. As noted, four pixels that 

are larger than or on the order of the pattern size can be used in the manner of a quad-cell, but 

as it has also been noted, quad-cells and centroiding sensors have different definitions of tilt. 

The use of pixels of intermediate size will produce measured values of tilt that do not properly 

correspond to either Z-tilt or G-tilt, but are likely to lie somewhere between the two. 

 

 Quad cells and lateral effect detectors output only four signals. Those four signals are 

reduced to two values for tilt in x and y through operations of addition, subtraction, and division 

that are simple enough to be carried out by analog circuitry. Each pixel in a CCD outputs a 

separate signal that must be read and recorded in order to perform the calculations. The 

computation to convert these values into T/T is also more involved than that for quad cells and 

lateral effect detectors. The time required to read in all values and perform the computation can 

limit the sampling rate for a CCD-based sensor. 

 

 Before leaving this discussion, it should be noted that recognition of the difference in G 

and Z-tilt and their ramifications to tilt correction were derived independently during work that 

will be described in chapter 8. As presented here, the implications of tilt measurement and 

correction at first glance appear as only subtleties, but in practice they have very real 

unintended consequences. Through further study, it became apparent that G and Z-tilt are well-

established phenomena and, in that sense, this discovery amounted to rediscovering the wheel.  
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 The motivation for a new S-H sensor verson 2  is to study different sensing method, as 

per Siegenthaler’s above thesis, and to see how well the telescope blur spot is corrected before 

making an investment of time and money to build a tip/tilt servo system.  Inevitably such a 

tip/tilt servo will be imperfect and it is valuable to understand these errors before building the 

servo.  As seen from Siegenthaler’s Ph.D. dissertation  there are subelties in sensing methods that 

need to be explored.   To that end, this S-H sensor version 2 provides not only the S-H spots for 

wavefront analysis, but also the telescope’s blur spot.   

 

 To that end the original version 1 of the S-H sensor design that is detailed in Astronomy 

Notebook pg 1, April 26, 2014, with diffraction effects given on pg 10, April 27, 2014, is 

modified by adding two beam splitters that bypass the S-H lenslet array and send its light directly 

to the focal plane.   To avoid the difficulties of having two camera focal planes that need to be 

time synchronized and their attendant increase of data rate into the processing CPU, the design 

only uses one focal plane.    

 

 

 

 

 

 


